More Integration techniques

You can get in groups and give me one written work if you want. I am not assigning groups since it might be hard to get together over the reading days. However if you know that someone is in town you would like to work with, I strongly encourage you to work together. It will be more fun that way :)

1. Use integration by parts on $\int_{0}^{x} f^{\prime \prime}(t)(x-t) d t$ to show that

$$
f(x)-f(0)=f^{\prime}(0) x+\int_{0}^{x} f^{\prime \prime}(t)(x-t) d t .
$$

2. Find $\int \frac{1}{x^{2}+6 x+14} d x$.
3. Find $\int e^{t} \sin (5 t+7) d t$.
4. (Adapted from Calculus,Hughes-Hallett, et al.) A rumor is spread in Kenyon College campus. For $0<a<1$ and $b>0$, the time t at which a fraction p of the school population has heard the rumor is given by

$$
t(p)=\int_{a}^{p} \frac{b}{x(1-x)} d x
$$

(a) Evaluate the integral to find an explicit formula for $t(p)$. Write your answer so it has only one \ln term.
(b) At time $t=0$ one percent of the Kenyon population $(p=0.01)$ has heard the rumor. What is a ?
(c) At time $t=1$ half the school population has heard the rumor. What is b ?
(d) At what time has 90% of the school population heard the rumor?
5. The moment generating function, $m(t)$, which gives useful information about the normal distribution of statistics is defined by

$$
m(t)=\int_{-\infty}^{\infty} e^{t x} \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}} d x
$$

Find a formula for $m(t)$.

Hint: Combine the exponential terms. Complete the square of the exponent of e and then use the fact that $\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=\sqrt{2 \pi}$.

